Typical areas of application

- Industrial motion
- Automotive motion

The MA2 series linear actuator was specifically designed for applications which face harsh working environments and require ruggedness and durability. Its IP69K protection ensures it will withstand high temperature, high pressure water jets, and the ingress of dust and other solid contaminants. The MA2 also has optional Reed switches along the outer tube which allow users to adjust the stroke length. For improved control and accuracy of motion, the MA2 can be customized with many different feedback options depending on your application requirements.

Example applications suitable for the MA2: Agricultural equipment such as spreaders, harvesters, grain handlers, combines and tractors.

Commercial and industrial applications such as commercial lawn mowers, scrubbers and sweepers, material handling equipment and livestock ventilation systems.

Key figures

- Voltage of motor
- Max. load
- Max. speed at full load
- Standard stroke
- Min. installation dimension
- IP rating
- Operational temperature range
 Operational temperature range at full performance
- Options

12 V DC, 24 V DC or 36 V DC 6000 N in push/pull 45 mm/s (with 1000 N in a push or pull condition) 25 ~ 1000 mm stroke+131 mm up to IP69K -30 °C ~ +65 °C

+5 °C ~ +45 °C Hall sensor(s), POT, Reed switch

VARIMAX AG . Power Transmission Technology . Normannenstrasse 14 . CH-3018 Bern Phone +41 31 990 00 70 . info@varimax.ch . www.varimax.ch

MA2-en-201802 Subject to technical changes and errors excepted.

Load and speed

CODE	Load		Self locking	Typical of	current 2)	Typical speed				
	push	pull	force 1)	no load 24 VDC	with load 24 VDC	no load 24 VDC	full load 24 VDC			
	[N)	(N)	[N]	[A]	[A]	[mm/s)	[mm/s)			
	Motor speed 5200 min ⁻¹ , duty cycle 25%									
F	1000	1000	1300	2.5	9.0	54.0	45.0			
G	2000	2000	2600	2.2	9.0	28.5	22.0			
Н	4000	4000	5200	2.0	8.5	14.0	11.7			
J	6000	6000	7800	2.0	7.0	7.0	6.2			

Note

- 1) This self-locking force level is reached only when a short circuit is applied on the terminals of the motor. All the control boxes have this feature built-in.
- 2) With a 12 V motor, the current is approximately twice the current measured in 24 V. With a 36 V motor, the current is approximately 66 % of the current measured in 24 V; speed will be similar for both voltages.

Wire definitions

-	CODE*	Pin	Pin Pin Pin		Pin	Pin	Pin	
		1	2	3	4	5	6	
		🔵 (green)	e (red)	🔘 (white)	🔵 (black)	💛 (yellow)	🔵 (blue)	
	1	extend (VDC+)	N/A	N/A	N/A	retract (VDC+)	N/A	
	2	extend (VDC+)	N/A	middle switch pin B	middle switch pin A	retract (VDC+)	N/A	
	3	extend (VDC+)	common	upper limit switch	N/A	retract (VDC+)	lower limit switch	
	4	extend (VDC+)	common	upper limit switch	medium limit switch	retract (VDC+)	lower limit switch	

Note

* See ordering key – functions for limit switches.

VARIMAX AG . Power Transmission Technology . Normannenstrasse 14 . CH-3018 Bern Phone +41 31 990 00 70 . info@varimax.ch . www.varimax.ch

Page 3

Performance data (24 VDC motor)

Motor speed 5200 min⁻¹, duty cycle 25%

Note

• The performance data in the curve charts shows theoretical value.

VARIMAX AG . Power Transmission Technology . Normannenstrasse 14 . CH-3018 Bern Phone +41 31 990 00 70 . info@varimax.ch . www.varimax.ch

MA2-en-201802

Page 4

Retracted length (mm)

Retracted length ≥ Stroke+A+B+C

Α				
Code front attachment	Code rear attachme A	ent 1	Code rear attachment 2 A	, 3
1, 3	+131		+134	
4, 6	+161		+164	
K	+178		+181	
В				
Stroke (mm)		В		
0~150				
151~200		-		
201~250		+10		
251~300		+20		
301~350		+30		
351~400*		+40		
C Code output signals				
0, 4, 5, 6, 7		-		
1		+20		
		_		

*For stroke over 400 mm + 10 mm for each incremental 50 mm stroke.

VARIMAX AG . Power Transmission Technology . Normannenstrasse 14 . CH-3018 Bern Phone +41 31 990 00 70 . info@varimax.ch . www.varimax.ch

Page 5

Ordering key (e.g.: MA2-1G-100231-1111-021-20)

Voltage	1 = 12 V 2 = 24 V	3 = 36 \ 5 = 24 \	/ /, thermal conti	ol		= 12 V, th = 36 V, th		
Load and speed	see page 2							
Stroke (mm)								
Retracted lenght (mm)	see page 5							
Rear attachment	1 = aluminum c 2 = aluminum c 3 = aluminum c	asting, U clevis	, slot 8.2 mm,	depth 15.0 m	nm, hole 10	.2 mm		
			,		.,			
Front attachment	1 = iron inner tu 3 = iron inner tu 4 = aluminum c 6 = aluminum c K = rod end bea	ibe with punch asting, U clevis asting, U clevis	ed hole, no slo , slot 8.2 mm, , slot 8.2 mm,	t, hole 12.8 r depth 15.0 m	mm 1m, hole 10			
Front attachment Direction of rear att (counterclockwise)	3 = iron inner tu 4 = aluminum c 6 = aluminum c K = rod end bea	ibe with punch asting, U clevis asting, U clevis	ed hole, no slo , slot 8.2 mm, , slot 8.2 mm, mm	t, hole 12.8 r depth 15.0 m	mm 1m, hole 10			
Direction of rear att	3 = iron inner tu 4 = aluminum c 6 = aluminum c K = rod end bea	the with punch asting, U clevis asting, U clevis ring, hole 12.8 1 = 90° as at full retrac as at full retrac as at full retrac	ed hole, no slo ;, slot 8.2 mm, ;, slot 8.2 mm, mm ted/extended p ted/extended p ted/extended p	t, hole 12.8 r depth 15.0 m $2 = 0^{\circ}$ ositions to co ositions to co ositions to se	nm nm, hole 10 nm, hole 12 ut current ut current end signal	.8 mm - 3rd LS to		-
Direction of rear att (counterclockwise) Functions for	3 = iron inner tu 4 = aluminum cu 6 = aluminum cu K = rod end bea achment 1 = two switche 2 = two switche 3 = two switche	the with punch asting, U clevis asting, U clevis ring, hole 12.8 $1 = 90^{\circ}$ as at full retract as at full retract as at full retract as at full retract 4 = one	ed hole, no slo , slot 8.2 mm, , slot 8.2 mm, mm ted/extended p ted/extended p ted/extended p	t, hole 12.8 r depth 15.0 m depth 15.0 m $2 = 0^{\circ}$ ositions to co ositions to co ositions to se ositions to se ositions to se 6 = one reed	nm nm, hole 10 nm, hole 12 ut current ut current + end signal end signal - sensor on	.8 mm - 3rd LS to + 3rd LS to outer tube	o send s	-
Direction of rear att (counterclockwise) Functions for limit switches	3 = iron inner tu $4 = aluminum c$ $6 = aluminum c$ $K = rod end bea$ achment $1 = two switche$ $2 = two switche$ $3 = two switche$ $4 = two switche$ $0 = without$	the with punch asting, U clevis asting, U clevis asting, U clevis $1 = 90^{\circ}$ as at full retract as a full retr	ed hole, no slo , slot 8.2 mm, , slot 8.2 mm, mm ted/extended p ted/extended p ted/extended p ted/extended p Hall sensor	t, hole 12.8 r depth 15.0 m depth 15.0 m $2 = 0^{\circ}$ ositions to co ositions to co ositions to se ositions to se ositions to se 6 = one reed	nm nm, hole 10 nm, hole 12 ut current ut current + end signal end signal - sensor on	.8 mm - 3rd LS to + 3rd LS to outer tube	o send s	-
Direction of rear att (counterclockwise) Functions for limit switches Output signals Connector	3 = iron inner tu 4 = aluminum co 6 = aluminum co K = rod end bea achment 1 = two switche 2 = two switche 3 = two switche 4 = two switche 0 = without 1 = POT	the with punch asting, U clevis asting, U clevis asting, Hole 12.8 1 = 90° as at full retract as at full retract as at full retract as at full retract as at full retract b at full retract as at full retract as at full retract b at full retract	ed hole, no slo a, slot 8.2 mm, b, slot 8.2 mm, mm ted/extended p ted/extended p ted/extended p ted/extended p Hall sensor Hall sensor	t, hole 12.8 r depth 15.0 m depth 15.0 m $2 = 0^{\circ}$ ositions to co ositions to co ositions to se ositions to se ositions to se 6 = one reed	nm nm, hole 10 nm, hole 12 ut current ut current + end signal end signal - sensor on sensor on 1500 mm	.8 mm - 3rd LS to + 3rd LS to outer tube	o send s	-
Direction of rear att (counterclockwise) Functions for limit switches Output signals	3 = iron inner tu 4 = aluminum co 6 = aluminum co K = rod end bea achment 1 = two switche 2 = two switche 3 = two switche 4 = two switche 0 = without 1 = POT 2 = tinned leads 1 = straight, 500	the with punch asting, U clevis asting, U clevis asting, Hole 12.8 1 = 90° as at full retract as at full retract as at full retract as at full retract as at full retract b at full retract as at full retract as at full retract b at full retract	ed hole, no slo , slot 8.2 mm, , slot 8.2 mm, mm ted/extended p ted/extended p ted/extended p Hall sensor Hall sensor	t, hole 12.8 r depth 15.0 m depth 15.0 m $2 = 0^{\circ}$ ositions to co ositions to co ositions to se ositions to se 6 = one reed 7 = two reed 3 = straight,	nm nm, hole 10 nm, hole 12 ut current ut current + end signal - sensor on sensors on 1500 mm 2000 mm	.8 mm - 3rd LS to + 3rd LS to outer tube	o send s	-

Terms of use

The user is responsible for determining the suitability of VARIMAX products for a specific application. VARIMAX products are subject to change without prior notice.

VARIMAX AG . Power Transmission Technology . Normannenstrasse 14 . CH-3018 Bern Phone +41 31 990 00 70 . info@varimax.ch . www.varimax.ch